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An Important Scientific Challenge:
to understand the very first moments of our Universe
after the Big Bang

Big Bane

13.8 Billion Years
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History of the Universe
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Plasma Neutrons Nuclei
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Particle Factories: the accelerators
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LHC at CERN, Geneve 2009




e UJLODC dquve >




IQ} O

LHC needed years of R&D

Construction of one
of the cavern hosting
the experiments

Dipole magnets
string test







Accelerator Control Room




Science is getting more and more global
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CANDIDATE FOR OTHERS Chile 7 Georgia 10 New Zealand

ACCESSION China 130 Iceland 4 Pakistan
OBSERVERS Romania ) Argentina China (Taipei) 70 Iran 22 Peru )
India Armenia Colombia 11 Ireland 7 Saudi Arabia
Japan Australia Croatia 25 Korea 103 Slovenia
Russia ASSOCIATE MEMBER Azerbaijan Cuba 3 Lithuania 16 South Africa

IN THE PRE-STAGE Belarus Cyprus 10 Mexico 40 Thailand

TO MEMBERSHIP Brazil Egypt 18 Montenegro 1 TEYR.OM.

Israel 57 Canada Estonia 18 Morocco 9 Ukraine

Serbia 30




@\ Age Distribution of Scientists

,,) - and where they go afterwards
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They do not all stay: where do they go?

Chemistry

@ Whereabouts of PhD's in Industry




The LHC tunnel is at 100 m
underground

e 4 gigantic caverns host 4
huge detectors

e center of mass energy of
14 TeV, never reached

. - before

“== ATLAS ALICE
)| Point1 =z Point 2

ebeam intensity orders of
magnitude higher than
before

e almost 40.000 ton of
material at 1.9 K, a
temperature lower than the
cosmic background




ATLAS = atlas.ch

7000 t —=100.000.000 canali di elettronica - 2100 scienziati. 37 nazioni, 167 1stituti
Costo 400 M€
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The first step: the briks
of the Universe...



The Standard Model
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The fundamental interactions
Interaction Strength Effect

Gravitational 1 Keeps you on the

Weak 102° . | boson

Z

boson

Electromagnetic 1040 Keeps together the atoms

109 m 1075107

—-—
Strong 1043 Keeps together the nuclei
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The cosmos
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Helium atom

200,000 yrs.
10,000°C

Electrons

combine with
protons and
neutrons to form
atoms, mostly
hydrogen and
helium. ngm
can finally

 Protogalaxy

1 billion yrs.
-200°C

Gravity makes

hydrogen and
helium gas
coalesce to form
the giant clouds
that will become
galaxies; smaller
clumps of gas
collapse to form
the first stars
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DAY

15 billion yrs.
-270°C

As palaxies

cluster
together under
wravily, the first
stars die and spew
heavy clements
into space; these
will eventually
form into new
stars and planets

TIME Geaphic by Ed Gabe|



A Mini-Bang in the lab

We need a small system so that it can be accelerated
to ultrarelativistic speed (99.9% c)

That system (i.e. a chunk of matter and not just a single
particle) must follow simple rules of thermodynamics
and form a new state of matter in a particular phase

We can use heavy ions (e.g. Pb). They are finy (~10'4
m) but have a finite volume that can be exposed to
pressure and femperature

We will try to force matter, through a phase transition, to a
new state of matter called "Quark Gluon Plasma”



We need Heavy Ions

Au+Au E.,=200 AGeV t=-19.89 fm/c

2 nuclei
colliding at
very high
energy

H. Weber / UrQMD Frankfurt/M
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A simulated collision in Alice




— Up to 1037-10~ s from the Big Bang the Universe was
formed by a “soup” of quarks and gluons ... the
Quark Gluon Plasma (QGP)

@hy to study the QG&

*Which are the main
features of the QGP?

Is it possible to have
such a system in
laboratory?

-Toep=2000 billions K

Q.SUN=15 millions K /




Asimptotic freedom - Confinement
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Separating interacting quark, a tension
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We need to create a system with hugh energy density
(particles at infinitesimal distance) in order to have a
negligible strong interaction

A S
5 >
Hadrons ENERGY

Quark Gluon Plasma

David Gross, Nobel Lecture (RMP 05)



Phases of the “"normal” matter
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Plasmas - The 4" State of Matter
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Phase Diagram of QCD Matter

see: Alford, Rajagopal, Reddy, Wilczek

Phys. Rev. D64 (2001) 074017
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Where can we produce the QGP?

15 thousand miliion years
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Pb+Pb event in Alice

Thousands of particles produced per collision (25 ns)



Data Acquisiﬁon and Analysis
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Experimental data at the LHC

Sounding balloon

* The quantity of produced data is enormous! ) G
~1.3 GB/s > 6 times the Britannic Encyclopedia T
* If we had to store those data on CD we (5 m)
should need a stack of disks 20 km tall ... —
each year!
:?E;tﬁ:?nc
* New computing solutions developed: GRID ,

W,

57



GRID architecture




Can a Black Ho

be produced at

the LHC?¢

"It's black, and it looks like a hole. I'd say it's a Black Hole.”




Black Holes evolution and decay

Mini black holes produced at LHC would be light and tiny
compared to cosmic black holes (~TeV versus ~3 Solar masses)
This means they would be extiremely hot (T~100 GeV) and
evaporate almost instantaneously, mainly via Hawking radiation

- cosmic BH 10'? GeV - LHC energy ~104 GeV

Typical decay signature:
~6 ptc for each decay emitted spherically

/5% quarks and gluons @NS,| Aot cen

10% charged leptons Y 5 i

5% neutrinos

5% of photons or W/Z boson \3‘, —

new ptc around 1 eV W
;3*@%N~

<
BH event

simulated by CMS



A "soup" reach of information

% WL
Properties of QCD at high =e

; ©

temperature: degrees of >
\fr'eedom, viscosity, conductivity, - =

Equation state of
QcCD

Partonic energy loss

Chemical composition



Global observables summary

Something less inferesting ... at least for you

« Energy density > 50 GeV/fm3 \
« Freeze-out volume ~300 fm3

* Time scale until decoupling 10 fm/c

» Elliptic flow as expected from hydro-dynamical calculations

« Initial state saturation effects smaller than expected




Conclusions

Alice and the LHC are operating wonderfully
unveiling the first secrets of the Early Universe

A new and unique era for the exploration of the matter just
started. The connections with other branches of physics are
incredibly high and intriguing
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I’ m still confused ...
.. but at high level !

E.Fermi, Chicago 1951



